首页> 外文OA文献 >Fast Low-Rank Matrix Learning with Nonconvex Regularization
【2h】

Fast Low-Rank Matrix Learning with Nonconvex Regularization

机译:非凸正则化的快速低秩矩阵学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-rank modeling has a lot of important applications in machine learning,computer vision and social network analysis. While the matrix rank is oftenapproximated by the convex nuclear norm, the use of nonconvex low-rankregularizers has demonstrated better recovery performance. However, theresultant optimization problem is much more challenging. A very recentstate-of-the-art is based on the proximal gradient algorithm. However, itrequires an expensive full SVD in each proximal step. In this paper, we showthat for many commonly-used nonconvex low-rank regularizers, a cutoff can bederived to automatically threshold the singular values obtained from theproximal operator. This allows the use of power method to approximate the SVDefficiently. Besides, the proximal operator can be reduced to that of a muchsmaller matrix projected onto this leading subspace. Convergence, with a rateof O(1/T) where T is the number of iterations, can be guaranteed. Extensiveexperiments are performed on matrix completion and robust principal componentanalysis. The proposed method achieves significant speedup over thestate-of-the-art. Moreover, the matrix solution obtained is more accurate andhas a lower rank than that of the traditional nuclear norm regularizer.
机译:低秩建模在机器学习,计算机视觉和社交网络分析中具有许多重要应用。尽管矩阵等级通常通过凸核范数来近似,但是使用非凸的低等级正则化器已显示出更好的恢复性能。然而,结果优化问题更具挑战性。最近的最新技术是基于近端梯度算法。但是,在每个近端步骤中都需要昂贵的完整SVD。在本文中,我们证明了对于许多常用的非凸低秩正则化器,可以得出一个临界值,以自动对从近邻算子获得的奇异值进行阈值处理。这允许使用幂方法有效地近似SVD。此外,近端算子可以简化为投影到该前导子空间上的小得多的矩阵。可以保证收敛速度为O(1 / T),其中T是迭代次数。在矩阵完成和健壮的主成分分析方面进行了广泛的实验。所提出的方法在现有技术上实现了显着的加速。而且,所获得的矩阵解比传统的核范数正则化器更准确,并且等级更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号